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ABSTRACT

Context. Computing spectra from 3D simulations of stellar atmospheres when allowing for departures from local thermodynamic
equilibrium (non-LTE) is computationally very intensive.
Aims. We develop a machine learning based method to speed up 3D non-LTE radiative transfer calculations in optically thick stellar
atmospheres.
Methods. Making use of a variety of 3D simulations of the solar atmosphere, we trained a convolutional neural network, SunnyNet,
to learn the translation from LTE to non-LTE atomic populations. Non-LTE populations computed with an existing 3D code were
considered as the true values. The network was then used to predict non-LTE populations for other 3D simulations, and synthetic
spectra were computed from its predicted non-LTE populations. We used a six-level model atom of hydrogen and Hα spectra as test
cases.
Results. SunnyNet gives reasonable predictions for non-LTE populations with a dramatic speedup of about 105 times when running
on a single GPU and compared to existing codes. When using different snapshots of the same simulation for training and testing,
SunnyNet’s predictions are within 20-40% of the true values for most points, which results in average differences of a few percent in
Hα spectra. Predicted Hα intensity maps agree very well with existing codes. Most importantly, they show the telltale signs of 3D
radiative transfer in the morphology of chromospheric fibrils. The results are not as reliable when the training and testing are done
with different families of simulations. SunnyNet is open source and publicly available.

Key words. Radiative transfer – Methods: numerical – Line: formation – Sun: atmosphere – Stars: atmospheres

1. Introduction

Forward modeling of stellar spectra using 3D models of atmo-
spheres has become an invaluable tool. Its applications range
from ushering in a new era of solar and stellar abundance de-
terminations (see Asplund 2005, and references therein), under-
standing the dynamics of the solar atmosphere (e.g., Martínez-
Sykora et al. 2009; Danilovic et al. 2010; Pereira et al. 2015;
Leenaarts et al. 2015; Hansteen et al. 2017; Schmit et al. 2017;
Tei et al. 2020), and guiding the interpretation of observations,
in particular from new instruments or observatories (e.g., Pereira
et al. 2013; Quintero Noda et al. 2017; Bjørgen et al. 2018; Tru-
jillo Bueno et al. 2018; Riethmüller & Solanki 2019; Jafarzadeh
et al. 2019).

For cool stars, the atmospheres are optically thick at most
of the emitted wavelengths and, in particular for the outer atmo-
spheric layers, the plasma is decoupled from the radiation field
and therefore the handy approximation of local thermodynamic
equilibrium (LTE) no longer holds. This means that to obtain
accurate synthetic spectra, one must solve the full 3D radiative
transfer problem in non-LTE (NLTE). Such calculations require
vast amounts of atomic data: in addition to the usual ingredients
of spectral synthesis, one must also model in detail many atomic
levels and transitions (not only the ones involved in the line(s)
of interest) and include the cross sections that govern collisional
excitation and de-excitation from atomic levels at different tem-
peratures. The NLTE problem is nonlocal, as radiation traveling
large distances can couple to different parts of the atmosphere.
Therefore, it becomes computationally very expensive. For stud-

ies of the solar chromosphere in particular, where high spatial
resolution is important to resolve small-scale phenomena, the
cost of 3D NLTE spectral synthesis becomes prohibitively ex-
pensive, requiring supercomputers for even simple applications.

Presently, there are several 3D NLTE codes used for cool-star
spectral synthesis, for example Multi3D (Leenaarts & Carlsson
2009), PHOENIX/3D (Hauschildt & Baron 2010), and PORTA
(Štěpán & Trujillo Bueno 2013), to name a few that are also mas-
sively parallel. These codes solve the radiative transfer equation
iteratively to obtain estimates for the atomic level populations
and radiation field that are consistent in all locations in the 3D
atmosphere. Typically, variations of a procedure called Λ itera-
tion are used. The result is an estimate of the source function S λ,
the ratio between the extinction coefficient and the emissivity at
a given wavelength. Once S λ is known, it is straightforward to
solve the radiative transfer equation for a given ray (represented
by a direction in optical depth τλ):

dIλ
dτλ

= Iλ − S λ, (1)

which is typically done by integrating the equation over the
depth points along the ray (the so-called formal solution). The
bulk of the computational effort is therefore spent in the iter-
ative procedure to obtain the estimate of the source function,
which also involves obtaining the atomic level populations and
the angle-averaged radiation field.

In this work, we present a novel approach to accelerate
3D NLTE radiative transfer calculations in atmospheres of cool
stars, focusing on the solar chromosphere as a main application.
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Instead of following the traditional approach through a Λ itera-
tion to obtain the source function, we instead used a neural net-
work to learn the mapping between LTE and NLTE populations
of an atomic species of interest. We run the Multi3D code on
a training set of atmospheres for a given model atom, and treat
the results as the absolute true mapping between LTE and NLTE
populations, which is used to predict the NLTE populations for
an arbitrary atmosphere. We then use the estimated NLTE popu-
lations to compute the synthetic spectra. The idea of using neural
networks to learn the mapping between atmosphere and NLTE
spectra was already used by Osborne et al. (2019) to invert ob-
servations of flares. And this approach also relates to a growing
body of work (e.g., Asensio Ramos & Díaz Baso 2019; Beck
et al. 2019; Milić & Gafeira 2020; Gafeira et al. 2021) dedicated
to speeding up spectropolarimetric inversions from observations,
a procedure that also involves repeatedly solving the radiative
transfer equation and is computationally very demanding.

What most distinguishes our approach from previous work
is that our network considers the full 3D problem and is not lim-
ited to the 1.5D approximation of treating each column from a
3D box as an independent plane-parallel atmosphere (neglecting
inclined rays). As shown by Leenaarts et al. (2012) for the Hα
line, full 3D NLTE is needed to model several lines formed in
the solar chromosphere, in particular the radiation near the line
cores.

2. SunnyNet

2.1. Motivation and overall design

In this section we detail the design of our neural network ap-
proach to speed up 3D NLTE calculations, which we named Sun-
nyNet. The overarching goal is a fast method to compute syn-
thetic spectra from a 3D model atmosphere, for a given atomic
transition and viewing angle. Existing methods can already com-
pute accurate solutions to this problem, but are notoriously slow.
Hence our focus here is on speed of computation.

Since the end goal is the calculation of spectra, one can en-
visage a procedure to learn the mapping from atmospheric prop-
erties (e.g., temperature, density, electron density, velocities) to
the intensity spectra directly. Indeed this is the approach taken
by Osborne et al. (2019). However, using this approach one
needs to train the network in advance for each spectral line of
interest, and for each viewing angle, since intensity is direction-
dependent. Adding more spectral lines or different viewing an-
gles would require re-running the training procedure. This can
be time-consuming, since the training of neural networks is the
most intensive part of the process. To allow for more flexibil-
ity, we instead designed SunnyNet to learn the mapping between
LTE and NLTE atomic populations.

The atomic populations are a more fundamental quantity that
describe the state of matter for a given atom. They are indepen-
dent of viewing angle and also allow the synthesis of any tran-
sition between the levels of the chosen model atom. In this ap-
proach we use LTE populations as input to SunnyNet, instead of
the atmospheric properties themselves. This is feasible because
in LTE the populations, through the Saha-Boltzmann distribu-
tion, are a function of the atmospheric properties alone and al-
ready reflect the state of the atmosphere. Having the input and
output of SunnyNet to have the same dimensions (i.e., popu-
lations as a function of atomic level and spatial position) also
allows for a simpler algorithm. The final predicted spectra can
be computed by doing a single formal solution using the output
NLTE populations.

Throughout this work, we make use of 3D model atmo-
spheres ran with from the Bifrost code (Gudiksen et al. 2011).
We ran Multi3D in some of the atmospheres to obtain what we
adopt as the true mapping between LTE and NLTE populations.
We use a 5-level plus continuum model atom of hydrogen (6
levels in total), although the procedure can be generalized to any
other model atoms.

Our implementation of SunnyNet was developed primarily
in Python using the PyTorch library (Paszke et al. 2019). The
code is freely available1 and licensed under a BSD license. The
code version used in this work is given by Chappell & Pereira
(2021).

2.2. Convolutional neural networks

Convolutional neural networks (CNNs) have become increas-
ingly popular tools for learning complex mappings between a
set of inputs and outputs. They learn a mapping h:

h
(
Xi, θ̂

)
= ỹi, (2)

which approximates the true function f :

f (Xi) = yi, (3)

by minimizing the total loss function L:

min
θ̂

L
(
θ̂
)

= min
θ̂

n∑
i=1

li
(
θ̂; yi, ỹi

)
. (4)

This is done through an iterative process where the input data
is passed forward through the model, a prediction is made, and
the loss is calculated. We then implement the backpropagation
algorithm of Rumelhart et al. (1986). This algorithm leverages
the chain rule and calculates the partial derivative of the loss
with respect to each weight and bias, thus telling us how much
each parameter contributes to the loss. We then take a step in the
parameter space in the direction of the negative gradient of the
loss using the gradient descent algorithm of Murphy (2013) and
update the parameters. By repeating this process until the loss is
minimized, we fine-tuned the weights and biases, θ̂, of our model
h and arrive at a best possible approximation for f .

While most image processing networks utilize 2D convolu-
tions, SunnyNet utilizes 3D and 1D convolutions. In a 3D con-
volution layer, the weights are sets of filters with shape (c, z, x, y)
where c is the number of channels and the remaining quantities
are spatial dimensions. These filters convolve in three dimen-
sions across the input transforming the 4D input into a 1D out-
put. A 1D convolution layer acts similarly, in that it has filters of
shape (c, z) that convolve across one dimension.

2.3. Data structure and z scale

To build our datasets we made use of atomic populations com-
puted with Multi3D. With our six-level model hydrogen atom,
the shape of our input data is therefore (6,Nz,Nx,Ny), where Nx,
Ny, and Nz can vary for each atmosphere.

We need to break down the populations into individual pairs
of input Xi’s and target yi’s, and then group these into training
and validation sets. The simplest approach is to consider the
1.5D problem. Each column in the LTE atmosphere is treated

1 https://github.com/bruce-chappell/SunnyNet
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Fig. 1: Visualization of 3D convolution for 3 × 3 input data.

as an independent input Xi with shape (6,Nz, 1, 1) and its corre-
sponding column from the NLTE atmosphere is the target point
yi with shape (6,Nz, 1, 1). Building our training pairs in this way
ignores all oblique radiation and therefore the network does not
consider the problem in 3D.

By choosing a window of neighboring LTE columns as Xi
and the NLTE column corresponding to the middle column of
the LTE bundle as yi, we can force the network to consider the
problem in 3D. The SunnyNet framework has networks built to
handle inputs of size (6,Nz, 1, 1), (6,Nz, 3, 3), (6,Nz, 5, 5), and
(6,Nz, 7, 7). Figure 1 shows an example of a 3× 3 data pair, with
the red LTE pixel being the pixel of interest. The window size is
a user-determined variable and should be chosen with consider-
ation to the spatial resolution of the simulation.

After splitting up our data into (6,Nz,Nx,Ny) training pairs,
we need to standardize the z dimension, defined as height in the
BIFROST simulations. Neural networks are rigid with respect to
the size of the input data they can handle, but simulations can
have varying height scales and different Nz. To solve this prob-
lem and make SunnyNet general for simulations with different
height scales, we converted the z dimension from a height scale
to a column mass scale with a fixed number of points. The col-
umn mass is a more relevant quantity for radiative transfer, and
the range of column masses that a given spectral line is sensitive
to is a more tightly defined quantity than the range of heights,
which depend on the particular stratification.

To convert the populations from height to column mass, we
started by computing the average column mass for each height
in the simulation, and then interpolated the populations from this
scale to our chosen column mass scale. For our runs, we used 400
points for the new column mass scale, evenly spaced on a log10
scale ranging from 10−6 to 102 kg m−2, which covers the regions
in the atmosphere that the hydrogen lines in our model atom are
most sensitive to. We did this for both the LTE inputs and the
NLTE targets, giving all the data we used a uniform dimension
of (6, 400,Nx,Ny).

Finally, before feeding the populations to SunnyNet, both in
the training and testing, we took the log10 of the populations.
This is for two reasons. First, to better condition the problem
since the populations for a given simulation column can span
more than 17 orders of magnitude. Second, the logarithm of pop-
ulations will ensure that the predicted populations are always
positive and avoid unphysical solutions. The choice of working
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Fig. 2: Visualization of one (6, 400, x, y) data point passing
through the SunnyNet.

in log space will have some consequences, which we discuss
later.

2.4. Network structure

The arrangement of layers often requires quite a bit of guess
work, as each application of neural networks is so unique and
there is a limited “best practice” standard. There are undoubtedly
many different and complex network structures that would work
well for radiative transfer problems. We found that the architec-
ture shown in Figure 2 both performed well and was relatively
simple.

This structure starts with a 3D convolutional layer which can
be selected to fit input data with window sizes of 1 × 1, 3 × 3,
5 × 5, and 7 × 7. This is the layer responsible for capturing all
of the 3D information across all channels of the input. Figure 1
shows how the 3D convolutional layer processes the input data
for the 3 × 3 case. The (6, 3, 3, 3) set of filters (yellow) is re-
stricted to only moving down the data column, pulling out one
output value (green) for each convolutional step. Therefore, at
each step, the network is gathering information from the point
of interests nearest neighbors in all directions. The process is the
same for the other input shapes, with the filters taking shapes
(6, 3, 1, 1), (6, 3, 5, 5), and (6, 3, 7, 7).

Next come three standard convolutional blocks consisting of
a 1D convolutional layer, an activation function, and a 1D Max-
Pool layer. The Rectified Linear Unit (ReLU) activation function
introduces nonlinearity to our network and the MaxPool layer
reduces dimensionality in the physical dimension. At the end of
our last convolutional block, we flattened all of the learned fea-
tures and untangle them using two linear layers. We included
a drop-out layer between the two linear layers which randomly
“turns off” nodes and their connections in a layer at a given prob-
ability p during each training iteration. This helps to prevent
over-fitting by training with a slightly different view of model
at each iteration, thus increasing generalization. Our output is a
vector of length 2400, which we then reshape to (6, 400, 1, 1) to
match the dimensionality of the target yi point.

Table 1 gives a more in-depth description of the network lay-
ers specifically for the 3× 3 model case. The layers are the same
for the other architectures, with the exception of the kernel size

Article number, page 3 of 14
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Table 1: Layers of SunnyNet

Layer Type Kernel
Shape

Output Shape Learnable
Parameters

3D Conv (3,3,3) (−1, 32, 400, 1, 1) 5 216

1D Conv (3) (−1, 32, 398) 3 104

1D MaxPool (2) (−1, 32, 199) 0

1D Conv (3) (−1, 64, 197) 6 208

1D MaxPool (2) (−1, 64, 98) 0

1D Conv (3) (−1, 128, 96) 24 704

1D MaxPool (2) (−1, 128, 48) 0

Linear – (−1, 4, 700) 28 881 500

Dropout – (−1, 4, 700) 0

Linear – (−1, 2, 400) 11 282 400

Input shape: (−1, 6, 400, 1, 1)
Total Parameters: 40 203 132
Parameter size: 153.36 MB

Notes. The layers are shown in order, from the first 3D convolutional
layer to the output linear layer. The stride for 3D Conv, 1D Conv, and
1D MaxPool are one, one, and two respectively. The 3D Conv layer
is also 0-padded in the z direction. The −1 dimension in the “Output
Shape” column is a placeholder for however many input samples are in
each training batch.

of the 3D Conv layer. We followed the convention of PyTorch
and grouped the weights and biases into the Learnable Parame-
ters group.

After the data makes its forward pass through the model, we
calculated the loss using the following modified mean squared
error equation:

Loss =
1
N

(1 − α)
N∑

i=1

(
NLTEtruei − NLTEpredi

)2

+
1
N
α

N∑
i=1

(
Htruei − Hpredi

)2
. (5)

This loss compares the predicted and true NLTE energy level
populations on a pixel by pixel basis, and also enforces particle
conservation. The particle conservation term compares the total
hydrogen atom populations at each point in the LTE column of
interest (Htruei ) to the total hydrogen atom populations at each
point in the corresponding NLTE prediction (Hpredi

). α is a user
defined parameter which determines how much each term in the
loss function contributes to the total loss.

2.5. Spectral synthesis

After running the neural network, the output will be the predicted
NLTE populations for our model atom for every point in the 3D
grid. The final step is to solve equation (1) and obtain Iλ for the
spectral line(s) and direction(s) of interest. To do this, we used

Table 2: Hyperparameters used

Epochs 50
Batch Size 128
Optimizer Adama

Learning Rate 10−3

α 10−3b

Early Stopping 5

Notes. (a) Refers to the Adam optimizer of Kingma & Ba (2014). (b) α
is the scaling factor used in the loss function.

the atomic level populations and 3D atmosphere to compute the
total source function S λ. For a given wavelength, S λ is defined
as the ratio of the emissivity jλ by the extinction coefficient αλ,
which comprise both continuum and line contributions:

S λ ≡
jλ
αλ

=
jcont
λ + jline

λ

αcont
λ + αline

λ

. (6)

We made use of the Transparency.jl library (Pereira 2021)
to compute the line and continuum emissivities and perform the
formal integration of equation (1). As continuum sources we
included free-free extinction from H−, H+

2 molecules and hy-
drogenic species, and bound-free extinction from H− and H+

2
molecules, together with Thomson scattering and Rayleigh scat-
tering from H atoms. For each spectral line, we used

αline
λ =

hc
4πλ0

(nlBlu − nuBul)ϕ(λ − λ0), (7)

jline
λ =

hc
4πλ0

nuAulϕ(λ − λ0), (8)

where nl and nu are the populations of the lower and upper levels,
Aul are the Einstein coefficients for spontaneous de-excitation,
Blu and Bul the Einstein coefficients for stimulated excitation and
de-excitation, and ϕ(λ−λ0) the line profile. Here we assumed the
same line profile for extinction and emission, and therefore are
under the approximation of complete redistribution (CRD).

For all the spectral synthesis in this work we limited our cal-
culations to the Hα line, since it is a strong line that is influenced
by 3D effects (Leenaarts et al. 2012) and a widely used diagnos-
tic of the solar chromosphere. The line is most sensitive the pop-
ulations of its upper and lower levels (n = 3 and n = 2), but it is
also sensitive to the ground-level population of hydrogen (n = 1)
and of ionized hydrogen (n = 6 in our model atom) through the
continuum contribution and total number of absorbers. For sim-
plicity we also limited our analysis to line profiles for emergent
intensity along the vertical direction (i.e., solar disk-center inten-
sity), but the method is general for any viewing angle.

3. Results

3.1. Running time

The appeal of machine learning techniques to solve the 3D
NLTE problem is in great measure to save computational time.
Hence, it is of great interest to see how SunnyNet performs
in this regard. We ran all our tests on a single machine, with
two AMD EPYC2 7302 3 GHz CPUs (each 16-core) and one
NVIDIA Tesla T4 GPU. PyTorch does the heavier computations
in the GPU, but some parts are also multithreaded in the CPU

Article number, page 4 of 14



Bruce A. Chappell and Tiago M.D. Pereira : SunnyNet: A neural network approach to 3D non-LTE radiative transfer

SunnyNet 3x3 SunnyNet 5x5 Multi3D

2

3

4

5

In
te

n
si

ty
(k

W
m
−

2
sr
−

1
n

m
−

1
)

Fig. 3: Hα line center intensity for the enhanced network simulation at t = 4250s using populations from Multi3D and SunnyNet
with 3 × 3 and 5 × 5 window sizes.

cores. Excluding the calculation of synthetic Hα intensity, which
is done via a separate script, SunnyNet performs three types of
tasks: preparing input files, training the network, and predicting
the populations. The first involves reading the 3D models and
preparing them into a form that SunnyNet can read. These tasks
take usually about one minute of wall time; the code is serial
and most of the time is spent on I/O operations. The training and
predicting parts is mostly run on the GPU.

For a simulation with 252 × 252 × 460 grid points, training
took about one minute per epoch. For our cases the training took
about 15-30 epochs, meaning a wall time between 15 to 30 min.
The prediction step was much faster, since it only took one for-
ward pass of the data through the model, and typically took be-
tween 30 s to one minute (most of the time spent in serial I/O and
rearranging the arrays). The time for the prediction step is the
one we should compare with typical 3D NLTE codes. Running
Multi3D for the same setup took between 20 000 and 100 000
CPU hours, depending on the CPU model and simulation snap-
shot, and was typically run using several thousand CPU cores
over more than a day. Therefore, the SunnyNet speedup is about
105 times compared to single CPU core performance. Finding
the equivalence between one GPU plus some multithreaded CPU
code with a single-CPU code is not straightforward, but this is a
conservative estimate.

Computing the Hα intensity with our Julia script (making
use of 32 CPU threads) for 101 wavelength points and a single
viewing angle took about one minute for 252 × 252 × 460 grid
points and 12 min for 720 × 720 × 635 grid points.

3.2. Window size

We started our analysis by finding out the best-performing input
parameters for SunnyNet. Then we proceeded to test SunnyNet
in increasingly challenging problems. First, we trained and test
SunnyNet using different snapshots from the same simulation.
Afterwards, we used different simulations for testing and train-
ing, looking at simulations with different magnetic field configu-
rations and also different spatial resolutions. These tests will give
us insight into how generalized the models are across different
simulations.

All models in our analysis have an identical structure except
for the first 3D Conv layer. They are trained with the same loss
function, and use the same training hyperparameters given in
Table 2. The parameters we used work well for all tested sim-
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Fig. 4: Relative error of Hα mean intensity (compared to inten-
sity from Multi3D populations) for the enhanced network simu-
lation, snapshot at t = 4250 s.

ulations and were found using best practices and some trial and
error. The intention in not conducting a meticulous hyperparam-
eter search is generalization. Endless hours could be spent fine-
tuning a model to perform well on a specific simulation, but this
could result in over-fitting to the limited data set, and loss of gen-
eralization. We chose, instead, to focus on testing our architec-
ture’s performance across various atmospheric conditions using
set hyperparameters.

We tested the base SunnyNet architecture with four different
input window sizes of 1 × 1, 3 × 3, 5 × 5, and 7 × 7. The train-
ing set for the models was built from two snapshots from the en-
hanced network simulation (described in §3.3), with a horizontal
pixel size of 96 km pix−1. The models were tested on two differ-
ent snapshots from the same simulation as the training data. For
both of our test snapshots, the predictions from the 3× 3 models
give the lowest errors.

In Figure 3 we compare the synthetic Hα line core intensity
using populations from SunnyNet with different window sizes
and populations from Multi3D, and in Figure 4 compare the ef-
fect of window sizes for all Hα wavelengths of the horizontally-
averaged mean spectra, relative to I0, the intensity using popula-
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tions from Multi3D. The results shown are for one snapshot, but
results for the snapshot at t = 4890 s (not shown) are very similar
– that snapshot shows overall intensities closer to the ones from
Multi3D, but the differential effect of window sizes shows the
same behavior. The figures illustrate that the window size that
gives the lowest population errors also gives the best agreement
with the synthetic intensities in Hα, although the differences be-
tween some window sizes are small. Since the window sizes are
defined in pixels and not in a physical quantity such as km, the
best fitting size will vary for different simulations. The key re-
lation here is how the pixel size relates to the photon mean free
path lλ, since lλ defines how many grid points a typical photon
can travel, and is the relevant quantity for assessing the impor-
tance of 3D effects. For higher resolution simulations one will
need to use larger window sizes, as a typical lλ is covered by
more grid points.

Using larger window sizes allows for the network to consider
a larger 3D box around the target column. However, if lλ . 1 pix,
increasing the window size will lead to the network being fed
more irrelevant data and possible over-fitting. The relation does
not seem very clear cut, with 5 × 5 performing worse near the
line core (longer lλ) and better at the wings (shorter lλ), while
7 × 7 does better at the line core but worse in the wings. Since a
window size of 3 × 3 gives the best results, we henceforth use it
for the rest of our analysis.

3.3. Enhanced network simulation

The first model we analyzed was trained on hydrogen popula-
tions calculated from the simulation by Carlsson et al. (2016).
This is a simulation of a “enhanced network” quiet Sun, and ac-
counts for nonequilibrium hydrogen ionization. The simulation
box has a physical size of 24×24×15.4 Mm3 and horizontal res-
olution 48 km pix−1. For all our calculations we did not use the
full resolution, but sampled every other spatial pixel, effectively
halving the resolution to 96 km pix−1, with 252× 252× 460 pix-
els used in the Multi3D run. The magnetic field setup consists
of two regions of opposite polarities separated by 8 Mm that
are injected at the bottom boundary as vertical field. The mean
unsigned magnetic field strength is 4.8 mT (48 G) at the photo-
sphere. The training set was constructed using the populations
calculated from two snapshots at t = 3850 s and t = 5300 s
respectively. We then used the populations from the two inter-
mediate snapshots, at t = 4250 s and t = 4890 s, as test sets for
the network. While we analyzed both snapshots, in the interest
of brevity, all the figures shown henceforth are for the snapshot
at t = 4890 s. There are only small differences in results for
the different test snapshots, with SunnyNet performing slightly
worse in the line core for the snapshot at t = 4250 s.

We first looked into how the predicted hydrogen populations
from the neural network compare to the populations obtained
with Multi3D. The plots in Figure 5 show histograms for the
absolute value of the relative differences between the true and
predicted populations for all points in the simulation grid, to-
gether with a plot of the median of the same quantity, but taken
along horizontal slices for each value of the vertical scale (in
average column mass). The histograms reflect how well Sun-
nyNet estimates the populations of different levels in the whole
box, while the second quantity gives an overview of any differ-
ences in the quality of estimation with height. In the regions with
higher column mass (deeper in the atmosphere), the populations
are very close to LTE (i.e., the original estimate that was fed
to SunnyNet), while for outer layers the populations are several
orders of magnitude away from the LTE values (below an aver-
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Fig. 5: Normalized departures between predicted and true pop-
ulations for the enhanced network simulation (t = 4890 s), for
four levels of hydrogen (n = 6 represents H II). Top: histograms
for all points in the simulation. Bottom: median of the departures
in the horizontal direction, as a function of average column mass.
The colors for different levels are the same for both panels.

age column mass of 10−3 kg m−2, nNLTE/nLTE can be up to 1018,
although median values are around 103 − 107 depending on the
level). This means that at lower column masses, SunnyNet’s pre-
dicted values depart strongly from its inputs, correctly following
the true result.

The results show that for the enhanced network simulation,
SunnyNet is able to predict the NLTE populations for most
points within 20-30%. The median normalized difference for all
levels is 0.204, the 10th percentile is 0.036 and the 90th per-
centile is 0.634. The quality of the prediction is nearly constant
across different levels – the ground (n = 1) and ionized (n = 6)
are slightly better predicted than the other excited states, but the
differences are small. The performance of SunnyNet also shows
little variation with height. In Figure 5, bottom panel, one sees
that the median of the distribution changes from approximately
0.1 to 0.35 and again all levels seem to follow the same trend.

One could expect that at deeper layers, where LTE condi-
tions dominate and the populations depart very little from the
initial input, that the predictions from SunnyNet would be much
more accurate that at upper layers, where the true result is orders
of magnitude off the initial input. However, this is a reflection on
how SunnyNet treats all layers equally. The network is not in-
formed about the physics of when LTE is valid, and tries to find
the best fitting solution also allowing for changes in populations
in regions where LTE dominates. This is also a consequence of
SunnyNet working in the log space of populations. In deeper lay-
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Fig. 6: Hα intensity for the enhanced network simulation at snapshot t = 4890s for the line center (top) and red wing at v = 15.96
km s−1 (bottom).

ers the populations are many orders of magnitude higher than in
the outer layers, and so a relatively small difference, for exam-
ple, 0.1 dex will result in a very large absolute difference (and a
less physical solution) in the deeper layers, than when compared
to the same small relative difference in the outer layers.

We looked also at the quality of the predictions versus the
departure coefficients b ≡ nNLTE/nLTE, to see if SunnyNet’s per-
formance was being affected when the true result is departs more
strongly from the initial input. The comparison shows that it is
not. The distribution of normalized differences vs departure co-
efficients is flat for almost all levels, the only exception is that
the ground level does slightly worse when b > 107, but all the
other levels show a flat distribution (and even a very slight im-
provement) as b increases.

In Figure 6 we compare Hα synthetic intensity maps com-
puted with the populations predicted from SunnyNet and with
the populations computed by Multi3D. We look at two wave-
lengths: the line center and a position on the red wing at
15.96 km s−1 from the line center. In both cases the overall mor-
phology is well reproduced but there are some localized differ-
ences. This is a pattern that repeats itself when analyzing differ-

ent snapshots (see Figure 3 for a comparison of the line center
for the t = 4250 s snapshot).

To study how other wavelengths compare on average, we plot
in Figure 7 the mean spectra computed from the SunnyNet and
Multi3D populations, and also the relative difference in inten-
sity. With the populations from SunnyNet, the wing intensity is
slightly underestimated, while around the Hα core it is overes-
timated, slightly above the 1% level. For snapshot t = 4250 s
(not shown) the core intensity overestimation is slightly larger,
up to 10%, but again for the wings and most of the profile the
difference is much lower. The reason why the line core for the
t = 4250 s case is, on average, not as well reproduced as the
continuum is not completely clear. The n = 1 and n = 6 levels
are slightly better predicted than the other two levels, and they
influence mostly the continuum intensity. A possible explana-
tion of the difference is because the radiation near the line core
is formed over a wider range of heights, and therefore sensitive
to a much larger fraction of the predicted populations, which can
locally have worse estimates, as seen in Figure 6 where the dif-
ferences in spatial structures are larger at the line core than at the
wing.
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Fig. 7: Spatially averaged Hα spectra for the enhanced network
simulation snapshot at t = 4890 s, covering the wavelength range
of ±127 km s−1 around the line core.
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Fig. 8: Same as Figure 5 but for the flaring sun simulation at
t = 9570s.

The synthetic intensities show that, while the population es-
timates are accurate to about 20–30%, the effect of this differ-
ence in the intensities is relatively small. Both intensity maps
and mean spectra are much closer than the difference in popula-
tions, since the radiative transfer equation is not linearly sensitive
to the populations.

3.4. Flaring simulation

To test SunnyNet in a wider range of physical properties, we
tested it also using the Bifrost simulation described in Hansteen
et al. (2017). This solar simulation is more active: a horizontal
flux sheet of 336 mT (3.36 kG) was injected, and as a conse-
quence, the simulation developed several small flaring events,
which are covered in the snapshots we studied.

The physical size of this simulation is the same as the en-
hanced network simulation and again we ran the radiative trans-
fer calculations on every second pixel in the horizontal scale,
resulting in a horizontal resolution of 96 km pix−1 and 252 ×
252× 467 pixels used in the Multi3D run. We followed the same
procedure as before, creating the training set using the popula-
tions from two snapshots of the simulation. These snapshots are
at t = 9100 s and 9590 s. As before, we tested SunnyNet using
multiple snapshots but show in figures only the results for the
snapshot at t = 9570 s – there were no significant differences in
the results for different snapshots.

Figure 8 shows the histograms and median differences vs
mean column mass for SunnyNet’s predictions for the t = 9570 s
snapshot. The results are similar to those of the enhanced net-
work. Overall, SunnyNet is able to predict the NLTE populations
for most points within 30–40%. The median normalized differ-
ence for all levels is 0.286, the 10th percentile is 0.049 and the
90th percentile is 1.015. This is not as good as the prediction
for the enhanced network simulation, but comparable. While the
median values are higher, the histogram distribution is also not
as symmetric when plotted against the logarithm of the normal-
ized differences – there is a marked decrease after a difference
of 100%. The quality of the predictions vs average column mass
also varies more than for the enhanced network simulation: for
some reason the predictions are not as good around an average
column mass of 10−2 kg m−2, and improve for larger and smaller
column masses. The n = 2 and n = 3 predictions are almost
equally good and show nearly the same profile with average col-
umn mass. For n = 1 the predictions are a little better, in par-
ticular for deeper layers, while n = 6 looks on average about as
good, but more accurate for the outer layers.

The flaring simulation is much more dynamic and contains
more extreme conditions than the enhanced network simulation.
Due to the intermittent flaring there is also a larger snapshot-to-
snapshot variation. For these reasons it is perhaps not so surpris-
ing that SunnyNet’s estimates are not as accurate. In this sim-
ulation there is also a wider range of departures from LTE, es-
pecially for the ground and ionized states. Again we see little
correlation between the quality of the estimates with the depar-
tures from LTE, meaning SunnyNet is performing at the same
level even in the most challenging regions.

In Figure 9 we compare synthetic Hα images at the line core
and wing using populations predicted by SunnyNet with the ones
from Multi3D, for the vertical emergent intensity. Again, the
overall morphology is generally very well replicated in the Sun-
nyNet maps. The dark filamentary parts are well reproduced, but
the predictions are worse for the very bright regions where the
flaring is taking place, in particular for the line center intensi-
ties. A possible reason for this is that pixels with very energetic
phenomena are more rare, and the network focuses more on the
most representative solutions. A closer look at the intensity maps
shows that SunnyNet maps are not as smooth as the ones from
Multi3D, showing some spurious substructure. This subtle ef-
fect is more evident in the line center images, but can also be
seen in the wing images. This could be a consequence of using a
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Fig. 9: Hα intensity for the flaring simulation at snapshot t = 9570s for the line core (top) and red wing at v = 15.96 km s−1

(bottom).

3×3 window size, while the Multi3D calculations allow for rays
spanning the entire box.

In Figure 10 we compare the spatially averaged Hα spec-
tra using populations from SunnyNet and Multi3D. We find that
SunnyNet’s predictions lead to slightly higher mean intensities
across the line profile, about 3 − 4% above those of Multi3D,
being more evident in the wings because of their higher inten-
sity. There is also some snapshot to snapshot variation with the
t = 9570 s snapshot giving results closer to Multi3D. This shows
that despite an overall worse prediction of the populations, the
mean spectra are still reasonably well reproduced.

3.5. Out-of-sample simulations

So far we have trained and tested SunnyNet using different snap-
shots from the same simulation, using it to predict populations
from any snapshot in the simulation time series. Our next step
is much more demanding: to train and test using different sim-
ulations. We constructed a training set built from two snapshots
from the enhanced network simulation and two snapshots from
the flaring simulation, and tested SunnyNet for two other simu-

lations, described below. Although all simulations were run with
the Bifrost code and share similar physics inputs such as the
equation of state, and treatment of radiation, they have substan-
tial differences in height stratification, magnetic configuration,
and physical size, as described below. The goal with these “out-
of-sample” tests was to run a worst-case scenario for SunnyNet,
using simulations substantially different from those used for the
training.

The first out of sample simulation is both larger and much
deeper, with a size of 72 × 72 × 64 Mm3, with 8.5 Mm above
the photosphere. We refer to this simulation as the “extended”
simulation. The simulation is part of a study of flux emergence
by Hansteen et al. (2020), and was provided courtesy of V. H.
Hansteen. It was started with a 10 mT horizontal magnetic field
throughout the convection zone, and a sheet with 20 mT was in-
jected at the bottom boundary, followed by injections of 100 mT
after 63 min and 200 mT after 133 min, decreasing to 30 mT at
288 min. This flux took a few hours to reach the surface, and
the snapshot we used here happens when a good amount of mix-
ing and flux emergence was already underway at the surface, at
about 367 min from the start. This extended simulation has a
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Fig. 10: Spatially averaged Hα spectra for the flaring simula-
tion snapshot at t = 9570 s, covering the wavelength range of
±127 km s−1 around the line core.

horizontal resolution of 100 km pix−1, which is nearly the same
as the pixel size we used for the training simulations, just a much
larger spatial extent and number of pixels: 720×720×635, about
8 times larger than the training simulations.

The second out of sample simulation has a much smaller
physical size but higher spatial resolution. We refer to it as
the “high resolution” simulation. Its spatial extent is 6 × 6 ×
10.3 Mm3, and it is part of an experiment with a higher spatial
resolution of 23 km pix−1. This simulation was provided cour-
tesy of M. Carlsson. It is much more quiet than the other simula-
tions, with a mean unsigned magnetic field in the photosphere of
about 0.6 mT. Although this simulation has a much smaller spa-
tial extent, it has about the same number of pixels as the training
simulations: 256× 256× 430. Given its reduced spatial coverage
and weak magnetic fields, this simulation lacks prominent mag-
netic loops or long chromospheric fibrils. The aim of including
this simulation was not just to test a more quiet Sun configura-
tion, but also to see how SunnyNet would fare when testing a
simulation with a much higher spatial resolution than the train-
ing simulations. In both training and testing the window size
was kept at 3 × 3. Because the simulations have different res-
olutions, the three pixels of the window have different physical
sizes between the training and testing simulations, which leads
to inconsistencies in the spatial extent of the windows. This was
intentional: we wanted to test how badly this would affect the
predictions.

Only one snapshot was tested for each of the out-of-sample
simulations. For the sake of brevity only a subset of the analysis
is shown in figures. The median normalized differences as func-
tions of average mean column mass (as in the bottom panel of
Figure 5) are shown for both simulations in Figure 11. Here we
see a very different behavior from before. For average column
masses larger than 1 kg m−2 the median differences are larger
than, but comparable, to the results for the enhanced network
and flaring simulations. However, for smaller average column
masses (layers above the solar surface), the estimates from Sun-
nyNet are orders of magnitude off.

For the extended simulation, the median normalized differ-
ence for all points and levels is 0.699, while the 10th percentile
is 0.132 and the 90th percentile 11.583. The n = 6 level is
predicted more accurately than the other levels, whose predic-
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Fig. 11: Same as Figure 5 (bottom panel), but for the out-of-
sample simulations. Top: extended simulation. Bottom: high-
resolution simulation.

tions get worse in the region of average column masses between
10−4 − 10−2 kg m−2, which is critical for the formation of Hα.
Moreover, the distributions of the normalized differences (not
shown) are not as symmetric as for the previous simulations, but
instead show a double peaked structure, with the largest peak
closer to the median at around 0.5, but with a significant second
peak around 5, with a tail extending to more than 100.

The intensity maps for the extended simulation are shown
in Figure 12, and the averaged spectra for both simulations are
shown in Figure 14. As expected from the much worse pop-
ulation estimates, the Hα intensities for the SunnyNet predic-
tions show strong departures from the Multi3D results. The line
core itself is only slightly underestimated, but is much wider and
the wings are strongly underestimated, close to 20% below the
Multi3D values. Both are a reflection of the poor estimates of
populations at all regions where the line is formed.

For the second out of sample simulation, the “high resolu-
tion” simulation, a similar pattern emerges. The estimates from
SunnyNet are somewhat worse for the out of sample simulations.
For the high resolution simulation, the median normalized differ-
ence for all points and levels is 0.726, while the 10th percentile
is 0.110 and the 90th percentile 4.404. All levels have poor pre-
dictions, with n = 2 and n = 3 slightly worse in the Hα forming
region. The distributions of normalized differences for the differ-
ent levels are asymmetric and show a double-peaked structure.
The predictions show a second peak at higher normalized differ-
ences and extending beyond 10. In Figure 11 we again see that
the median normalized differences are much higher than for the
“in sample” simulations, reaching orders of magnitude off the
true result, and particular acute differences at the very top layers
and around an average column mass of 10−3 kg m−2. Comparing
the accuracy of the predictions against the departure coefficients
we find little correlation, as in all the other simulations. The only
exception is the n = 1 level, whose predictions become markedly
less accurate for b > 108.
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Fig. 12: Hα intensity for the extended simulation for the line core (top) and red wing at v = 15.96 km s−1 (bottom).

The intensity maps for the high resolution simulation are
shown in Figure 13. They again illustrate how SunnyNet was not
able to accurately predict the populations in regions where Hα
is formed. Some map aspects are retained, such as granular mor-
phologies, but overall the intensity levels are underestimated by
SunnyNet. In the spatially averaged spectra of Figure 14 we see
how the line wing intensity is underestimated by more than 20%.
Here, the Hα core intensity is overestimated by nearly 20%.

4. Discussion

4.1. Context

SunnyNet is a relatively simple convolutional neural network
that we used to learn the mapping between LTE and NLTE
atomic level populations of a given atomic species for a 3D sim-
ulation of a stellar atmosphere. This mapping takes into account
how radiative processes affect the populations in 3D. These pro-
cesses can be strongly nonlocal in the higher atmosphere: when
photon mean free paths are larger, the populations at a given cell
of the simulation will be affected by the radiation of nearby cells.
SunnyNet accounts for these effects by taking as input a window

of cells (of a fixed but configurable size) around each cell that
we want as output. Once provided with an estimate of the NLTE
populations, we can then compute the real goal: synthetic spec-
tra for any line included in the model atom, and for any viewing
angle. SunnyNet is therefore one of the first 3D NLTE radiative
transfer codes based on machine learning.

Machine learning is today extremely attractive for 3D radia-
tive transfer problems because it can be computationally much
cheaper. Radiative transfer in 3D is resource-hungry. Even more
for NLTE problems where the angle-averaged radiation field
must be evaluated by solving the problem over many rays, and
repeatedly for many iterations. With typical problems this needs
hundreds or thousands of iterations (see e.g., Bjørgen et al. 2018)
and when adding more complex physics such as partial redis-
tribution it requires hundreds of thousands of CPU-hours for
a single simulation snapshot at moderately low spatial resolu-
tion (Sukhorukov & Leenaarts 2017). Therefore, the problem is
fertile for opportunities to speed it up using machine learning,
which can potentially greatly reduce the computational expense.
There have been several other ways to approach this problem
with machine learning. Earlier work aimed at inverting 1D spec-
tra using NLTE (e.g., Asensio Ramos & Díaz Baso 2019; Os-
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Fig. 13: Hα intensity for the high-resolution simulation for the line core (top) and red wing at v = 15.96 km s−1 (bottom).

borne et al. 2019), typically learns the conversion from atmo-
spheric quantities to spectra. Recently, Vicente Arévalo et al.
(2021) also develop methods for fast synthesis of NLTE spec-
tra, but by learning the conversion from atmospheric parameters
to departure coefficients, the ratio between NLTE and LTE pop-
ulations, which is closer to what we did with SunnyNet. Mishra
& Molinaro (2021) propose an altogether different approach: a
machine learning method to learn the actual radiative transfer
equation, which has the potential to be much more general and
shows very promising results (though it has not been applied to
NLTE problems in stellar atmospheres yet).

4.2. Strengths and limitations

Running SunnyNet for the six-level hydrogen model atom for
a simulation snapshot with 252 × 252 × 400 pixels on a single
machine with a GPU takes less than one minute, or up to 30 min
if we include also the time to train the network and synthesize
the Hα intensity. This is a speedup of about 105 compared to
running Multi3D.

Despite SunnyNet being able to provide estimates of NLTE
populations several orders of magnitude faster than conventional

methods, it is important to discuss its limitations. The output of
SunnyNet is just an estimate of the true solution. Given a prior
training, the network tries to find the most likely solution within
that base of knowledge that fits the input data. This means that
more extreme values will be harder to reproduce. This can be
seen in nearly all simulations, but is clearly observed in the Hα
core maps from the flaring simulation in Figure 9 – the bright-
est regions are not as bright when using the estimate from Sun-
nyNet. More common features such as the dark Hα fibrils are
reproduced more accurately by SunnyNet.

When trained and tested in similar simulations, SunnyNet’s
estimates are reasonably accurate, with most points predicted
within 20–40% of the true result. This may seem large, but the
radiative transfer equation is not linearly sensitive to the pop-
ulations, and the effect on the predicted Hα spectra is usually
only a few percent. The quality of the predictions is not spatially
uniform, not only in terms of more extreme points but also in the
smoothness of intensity maps. A close look at the intensity maps,
in particular for Hα line core shows that the SunnyNet intensities
are less smooth than the ones from Multi3D, with a faint but spu-
rious substructure that resembles noise. In any case, this effect is
rather subtle. On the other hand, the clear appearance of fibrils in
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Fig. 14: Spatially averaged Hα spectra for the out of sample sim-
ulations, covering the wavelength range of ±127 km s−1 around
the line core.

the Hα images from SunnyNet is a very encouraging sign, since
as Leenaarts et al. (2012) show, these features appear only when
radiative transfer is solved in 3D, and will be totally absent (at
least in the enhanced network simulation, which the authors also
use) when radiative transfer is performed in 1D. This suggests
that the approach followed by SunnyNet is sound, and the 3D
effects of radiation are being properly taken into account.

The tests with out-of-sample simulations show that in its
present formulation, SunnyNet performs poorly when testing
with different types of simulations that were not used for the
training. It is possible this problem could be mitigated by train-
ing SunnyNet in a wide range of simulations, therefore provid-
ing a much more complete set. But we did not test this, and used
only two families of simulations for training before testing with
different families. One may also note that the test with the high-
resolution simulation was not a fair comparison, since using the
same window size would force different physical sizes of the
pixel windows and therefore is inconsistent. But numerical sim-
ulations come in different resolutions, and it can become time
consuming to have complete training sets for all the resolutions
used, so it was important to identify how this would affect the re-

sults. What is clear is that SunnyNet performs very well at least
with the same family of simulations.

Even in the best-performing cases, SunnyNet is not currently
reliable to predict individual spectra with high accuracy. When
accuracy is paramount (e.g., element abundances) it cannot re-
place existing methods. And since it needs to be trained using
existing NLTE populations, it makes little sense to use it when
analyzing single snapshots of a simulation. However, a possible
use case would be to use SunnyNet to compute time series of
many snapshots. A few training sets would need to be run with
a traditional code such as Multi3D, which could be fed to Sun-
nyNet for computing populations for many snapshots in the same
series. SunnyNet can give reasonable estimates of the shapes of
spectral lines and very good estimates of intensity maps.

4.3. Extending SunnyNet

The experiments so far with SunnyNet show a very positive out-
come, but there is nevertheless room for improvement. There are
several ways SunnyNet could be extended. One way to do it is
to modify the window function to better follow the physics of
radiation in 3D. Currently the window consists of using a fixed
set of columns around the column of interest, since photons can
travel across cells and thereby inclined radiation influences the
surrounding regions. However, the photon mean free path varies
with height, and in the deeper regions it is typically much smaller
than the simulation cell sizes, while near the top it can span many
cell sizes. A constant window size is easier to implement nu-
merically, but a more physical scenario would be one where the
window size can change with height, like in a cone or extended
beam. It could be just one (meaning no effect of nearby cells)
in the deep regions, and then increase with height to mimic the
increase in photon mean free path. This could fix the inconsis-
tency we found with the window sizes: where too large a window
results in worse results.

Another approach that one could try was to learn not the
NLTE populations but the departure coefficients for each level,
b ≡ nNLTE/nLTE, similar to what Vicente Arévalo et al. (2021)
do, but perhaps starting from LTE populations and not the full
simulation quantities. This approach could lead to more realis-
tic estimates of the populations at least in deeper regions, which
as we saw have similar relative errors than at any other heights,
and for physical reasons (matter in LTE when density is high)
we would expect them to be easier to estimate. The present ver-
sion of SunnyNet can be trained with the departure coefficients
instead of NLTE populations, since the network is agnostic to
the quantity it is fed. We did some preliminary tests running this
way, and find that while it gives good estimates, especially im-
proved in the deeper layers, it can also introduce spurious results
in several columns. Therefore, it will be necessary to adjust the
architecture of the network and tweak the parameters to make it
work with the departure coefficients.

Finally, one could also see SunnyNet not as the end goal but
as another tool to facilitate the quick calculation of 3D NLTE
spectra. The estimates from SunnyNet could be fed to a tradi-
tional code such a Multi3D, which would use them as starting
guess. Since the SunnyNet populations are much closer to the
true result than the LTE populations, they would presumably
lead to far fewer iterations needed before achieving convergence.
This is a point where we also did some preliminary tests, by feed-
ing the SunnyNet populations into Multi3D. Unfortunately, this
did not work directly. Multi3D was unable to converge the Sun-
nyNet populations into a stable solution. A specific reason was
not clear, but could be related to the faint spatial substructure
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seen SunnyNet images. Some more work is needed here, and it
could be that one could apply some filtering to the SunnyNet
populations to make them more amenable to Multi3D or other
codes.

5. Conclusions

We demonstrated that a convolutional neural network can be
used to accurately predict atomic level populations taking into
account the effects of 3D NLTE radiative transfer. These pre-
dicted populations can then be used to solve the radiative transfer
equation in 3D for any spectral line between the levels predicted,
and at any viewing angle.

Our implementation, SunnyNet, uses the PyTorch library,
which can take advantage of GPUs to greatly speed up calcu-
lations. Compared to traditional codes to solve 3D NLTE radia-
tive transfer, SunnyNet is about 105 times faster. These gains in
running time come at the expense of some accuracy, so the re-
sults from SunnyNet should not be seen as the ground truth but
instead as a fast approximation.

Using a model atom of hydrogen and synthesizing the Hα
line, we showed that SunnyNet’s predicted populations are for
most points within 20–40% of the true result, which for the Hα
line translates to mean differences of only a few percent in the
line core, and smaller differences in the line wings. The overall
morphology of the intensity maps (synthetic spectroheliograms)
computed from SunnyNet’s predictions shows very good agree-
ment with those from Multi3D. In particular, the telltale signs
of 3D radiative transfer are present in the maps from SunnyNet.
The appearance of fibrils and loops in Hα, which do not appear
in 1.5D radiative transfer, suggests that SunnyNet is correctly
learning the 3D effects of NLTE radiative transfer. SunnyNet
works equally well in regions with strong departures from LTE,
and for various Bifrost simulations, ranging from quiet Sun to
more dynamic and showing small flares.

SunnyNet works best when training the network with snap-
shots of the same simulation that we want to compute the spectra
from. Training with a couple of snapshots from a given simula-
tion gives good results to predict the spectra of other snapshots
from the same simulation. Using SunnyNet to predict popula-
tions from a simulation different from the one used for the train-
ing does not give reliable results. It is possible this could be miti-
gated by building a larger training database comprising multiple
snapshots from a variety of simulations, but we did not test this
(our tests extended only to a total of four snapshots from two
different simulations).

SunnyNet is not yet able to completely replace existing
methods for 3D NLTE radiative transfer. Traditional codes are
still necessary to compute the populations needed to train Sun-
nyNet, and when accuracy is paramount. SunnyNet could be
used to provide fast computations of time series, which are pro-
hibitively expensive using current methods, and then a tradi-
tional code could be used to further refine the results in regions
of interest. Another alternative is to use SunnyNet, well trained
with different simulations, to instead provide the starting guess
of populations to traditional codes, which could then converge
faster to the final populations. There are several points where
SunnyNet can be improved or extended, and we believe similar
techniques will be in great demand in the future.
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